FABEC Vertical Flight Efficiency (VFE) Workshop, 7 December 2021

From CDA to the Continuous Idle Descent (CID): VFE with dynamic energy calculation

Martin Gerber – Technical Pilot Airbus A320

Ideal Descent: Continuous Idle Descent (CID) ∈ CDA

Pilot's main challenges during unrestricted descent

Aircraft Energy Management Kinetic and potential energy

The management of the dissipation of kinetic and potential energy of an aircraft by the flight crew (manual or automation) and by ATC.

Example #1:

Maintaining speed at altitude constraint leading to **over-energy** situation

Reduction of energy dissipation rate!

Aircraft Energy Management Kinetic and potential energy

The management of the dissipation of kinetic and potential energy of an aircraft by the flight crew (manual or automation) and by ATC.

Example #2:

LUFTHANSA GROUP

Speed trading at ALT constraints with constant energy dissipation rate in idle descent

Goal: to achieve a CDA in idle thrust (= CID) down to 1'000 ft AGL

dissipation rate!

Consequences of low VFE: suboptimum energy dissipation Analysis of current operation: Zurich

Example: Zurich RWY 14

Landing gear extension → Significant variation

- 3 speed-clusters at FAF (240kt, 210kt and 180kt)
- 7% at 8 NM (Final Approach Fix) or more from RWY to dissipate excessive kinetic energy

The lateral flightpath defines the vertical path Without accurate information about the distance to go (DTG) no VFE

Vertical Flight Efficiency is reduced due to:

- → Missing or inaccurate information to pilots about the expected **Distance-to Go** (DTG).
 - «Expect line-up via WPTxx, WPTxy, FAF»
 - «Expect 40NM track miles»
- → Not making use of tolerances in ATC assignments for speed and altitude:
 - «Descent when ready»

- «Reduce speed to reach 180kt at FAF»
- «Reduce speed 200kt or less»

Fixed flight path angle descent profiles

Aircraft following a vertical profile that tries to match the flight performance data

- Current FMS functions provide a reference vertical profile based on static, weightand wind-dependent performance data.
- ToD depends on selection of FMS FLPLN.
- This reference vertical profile can only be used with lateral navigation mode.
 - → With radar vectoring: no vertical flight guidance available
 - → Only 0.6% use of vertical managed mode below FL100 because of heading clearance ¹⁾
 - → Vertical profile depends on pilot's best guess!

¹⁾ Source : Thales AVS and NATS data collection of PJ31, PJ31 Appendix N

LUFTHANSA GROUP

Vertical Profile 35000 T/D - Total Energy = Ek + Ep 4.5 descent slope = -3° 30000 25000 **Deceleration requires** Aircraft at FL350 gentler slopes TAS = 450kts) ଅ ଅ -3.5° 15000 Total Aircraft Energy 10000 Optimal Descent → the aircraf continuously dissipates energy 5000 Aircraft at MSL TAS = 135kts-130 -110 -90 -70 -50 -30 -10 Dist (NM)

Idle Segment Geometrical Segment

Source: A. Buisson, Airbus. 3rd Eurocontrol CDO Workshop, 2013.

40000

- Instead of static performance database use a «mini flight simulator in real-time» to predict the vertical profile and optimum configuration changes (flaps, landing gear), taking into account ATC constraints.
- LNAS (Low Noise Augmentation System) technology demonstration platform.
- Can be used with DTG information under radar vectoring and not only in NAV mode.

Source DLR, Flight Test Demonstration with A320 ATRA at Zurich Airport, 2019.

LUFTHANSA GROUP

8/13

From EFB-Demonstrator to Avionics-Integration

Follow-Up Projects with SESAR Joint Undertaking

VLD 2 ALBATROSS, 2020 - 2023

 → Work package: Demonstration of LNAS-CDA from cruiselevel top-of-descent in regular revenue operation on Swiss Airlines A320neo. Improvement of LNAS wind data.

Exploratory Research DYNCAT, 2020 - 2022

- → Consortium of DLR, Thales Avionics, Empa,
 Swiss Airlines and Skylab
- ✤ Development of an FMS prototype function for dynamic configuration waypoints and energy management
- Distance-to-Go (DTG) / Requested Time of Arrival (RTA) / Permanent Resume Trajectory (PRT) function
- ✤ Energy cues for pilot

SESAR ER4 Project DYNCAT Dynamic Configuration Adjustment in the TMA

Vertical Optimization with RTA

Dynamic Calculation of Vertical Profil and Config Changes

Materials Science and Technology

Results from LNAS Flight Test Campaign, Zurich 2019

Materials Science and Technology

Competition pilot vs. machine to conduct the most energy-optimized descent

→ 90 Approaches

Zurich Airport RWY 14, 7'000 ft, 220 kt

- Every approach with radar vectoring and DTG indication
- → 23 Airline Pilots with and w/o LNAS

VS.

Results from LNAS Flight Test Campaign, Zurich 2019

Competition pilot vs. machine to conduct the most energy-optimized descent

How to achieve a better VFE?

A better mutual understanding of planet «ATCO» and planet «Pilot»

Thank you very much for your attention

Open for your comments and questions

LUFTHANSA GROUP